对数法则练习与巩固
将以下表达式写成单个对数:
a) \(\log_2 7 + \log_2 3\)
b) \(\log_2 36 - \log_2 4\)
c) \(3\log_5 2 + \log_5 10\)
d) \(2\log_6 8 - 4\log_6 3\)
e) \(\log_{10} 5 + \log_{10} 6 - \log_{10}\left(\frac{1}{4}\right)\)
使用对数法则:
a) \(\log_2 7 + \log_2 3 = \log_2(7 \times 3) = \log_2 21\)
b) \(\log_2 36 - \log_2 4 = \log_2\left(\frac{36}{4}\right) = \log_2 9\)
c) \(3\log_5 2 + \log_5 10 = \log_5 2^3 + \log_5 10 = \log_5 8 + \log_5 10 = \log_5(8 \times 10) = \log_5 80\)
d) \(2\log_6 8 - 4\log_6 3 = \log_6 8^2 - \log_6 3^4 = \log_6 64 - \log_6 81 = \log_6\left(\frac{64}{81}\right)\)
e) \(\log_{10} 5 + \log_{10} 6 - \log_{10}\left(\frac{1}{4}\right) = \log_{10}(5 \times 6) - \log_{10}\left(\frac{1}{4}\right) = \log_{10} 30 - \log_{10}\left(\frac{1}{4}\right) = \log_{10}\left(\frac{30}{\frac{1}{4}}\right) = \log_{10} 120\)
将以下表达式写成单个对数,然后简化答案:
a) \(\log_2 40 - \log_2 5\)
b) \(\log_6 4 + \log_6 9\)
c) \(2\log_{12} 3 + 4\log_{12} 2\)
d) \(\log_8 25 + \log_8 10 - 3\log_8 5\)
e) \(2\log_{10} 2 - (\log_{10} 5 + \log_{10} 8)\)
先合并对数,然后计算数值结果。
a) \(\log_2 40 - \log_2 5 = \log_2\left(\frac{40}{5}\right) = \log_2 8 = 3\)
b) \(\log_6 4 + \log_6 9 = \log_6(4 \times 9) = \log_6 36 = 2\)
c) \(2\log_{12} 3 + 4\log_{12} 2 = \log_{12} 3^2 + \log_{12} 2^4 = \log_{12} 9 + \log_{12} 16 = \log_{12}(9 \times 16) = \log_{12} 144 = 2\)
d) \(\log_8 25 + \log_8 10 - 3\log_8 5 = \log_8(25 \times 10) - \log_8 5^3 = \log_8 250 - \log_8 125 = \log_8\left(\frac{250}{125}\right) = \log_8 2 = \frac{1}{3}\)
e) \(2\log_{10} 2 - (\log_{10} 5 + \log_{10} 8) = \log_{10} 2^2 - \log_{10}(5 \times 8) = \log_{10} 4 - \log_{10} 40 = \log_{10}\left(\frac{4}{40}\right) = \log_{10}\left(\frac{1}{10}\right) = -1\)
用 \(\log_a x\)、\(\log_a y\) 和 \(\log_a z\) 表示:
a) \(\log_a(x^3y^4z)\)
b) \(\log_a\left(\frac{x^5}{y^2}\right)\)
c) \(\log_a(a^2x^2)\)
d) \(\log_a\left(\frac{x}{z\sqrt{y}}\right)\)
e) \(\log_a\sqrt{ax}\)
使用对数法则将复合表达式展开为简单对数的和或差。
a) \(\log_a(x^3y^4z) = \log_a(x^3) + \log_a(y^4) + \log_a z = 3\log_a x + 4\log_a y + \log_a z\)
b) \(\log_a\left(\frac{x^5}{y^2}\right) = \log_a(x^5) - \log_a(y^2) = 5\log_a x - 2\log_a y\)
c) \(\log_a(a^2x^2) = \log_a(a^2) + \log_a(x^2) = 2\log_a a + 2\log_a x = 2 + 2\log_a x\)
d) \(\log_a\left(\frac{x}{z\sqrt{y}}\right) = \log_a x - \log_a(z\sqrt{y}) = \log_a x - (\log_a z + \log_a\sqrt{y}) = \log_a x - \log_a z - \frac{1}{2}\log_a y\)
e) \(\log_a\sqrt{ax} = \log_a(ax)^{\frac{1}{2}} = \frac{1}{2}\log_a(ax) = \frac{1}{2}(\log_a a + \log_a x) = \frac{1}{2}(1 + \log_a x)\)
解以下方程:
a) \(\log_2 3 + \log_2 x = 2\)
b) \(\log_6 12 - \log_6 x = 3\)
c) \(2\log_5 x = 1 + \log_5 6\)
d) \(2\log_9(x + 1) = 2\log_9(2x - 3) + 1\)
提示:必要时将对数移到同一边,使用除法法则。
先使用对数法则化简方程,然后转化为指数方程求解。
a) \(\log_2 3 + \log_2 x = 2\)
\(\log_2(3x) = 2\)
\(3x = 2^2 = 4\)
\(x = \frac{4}{3}\)
b) \(\log_6 12 - \log_6 x = 3\)
\(\log_6\left(\frac{12}{x}\right) = 3\)
\(\frac{12}{x} = 6^3 = 216\)
\(x = \frac{12}{216} = \frac{1}{18}\)
c) \(2\log_5 x = 1 + \log_5 6\)
\(\log_5 x^2 = \log_5 5 + \log_5 6\)
\(\log_5 x^2 = \log_5(5 \times 6) = \log_5 30\)
\(x^2 = 30\)
\(x = \sqrt{30}\)(因为 \(x > 0\))
d) \(2\log_9(x + 1) = 2\log_9(2x - 3) + 1\)
\(\log_9(x + 1)^2 = \log_9(2x - 3)^2 + \log_9 9\)
\(\log_9(x + 1)^2 = \log_9[9(2x - 3)^2]\)
\((x + 1)^2 = 9(2x - 3)^2\)
解这个二次方程得到 \(x = 2\) 或 \(x = \frac{8}{5}\)
a) 给定 \(\log_3(x + 1) = 1 + 2\log_3(x - 1)\),证明 \(3x^2 - 7x + 2 = 0\)。(5分)
b) 因此,或其他方法,解 \(\log_3(x + 1) = 1 + 2\log_3(x - 1)\)。(2分)
对于a),使用对数法则化简方程;对于b),解二次方程并检查定义域。
a) \(\log_3(x + 1) = 1 + 2\log_3(x - 1)\)
\(\log_3(x + 1) = \log_3 3 + \log_3(x - 1)^2\)
\(\log_3(x + 1) = \log_3[3(x - 1)^2]\)
\(x + 1 = 3(x - 1)^2\)
\(x + 1 = 3(x^2 - 2x + 1)\)
\(x + 1 = 3x^2 - 6x + 3\)
\(0 = 3x^2 - 7x + 2\)
因此 \(3x^2 - 7x + 2 = 0\)
b) 解 \(3x^2 - 7x + 2 = 0\):
\((3x - 1)(x - 2) = 0\)
\(x = \frac{1}{3}\) 或 \(x = 2\)
检查:当 \(x = \frac{1}{3}\) 时,\(x - 1 = -\frac{2}{3} < 0\),不满足对数定义域
当 \(x = 2\) 时,\(x + 1 = 3 > 0\) 且 \(x - 1 = 1 > 0\),满足条件
所以 \(x = 2\)
给定 \(a\) 和 \(b\) 是正常数,且 \(a > b\),解联立方程:
\(a + b = 13\)
\(\log_6 a + \log_6 b = 2\)
问题解决:仔细注意题目中给出的 \(a\) 和 \(b\) 的条件。
从第二个方程使用乘法法则,然后联立求解。
从第二个方程:\(\log_6 a + \log_6 b = 2\)
\(\log_6(ab) = 2\)
\(ab = 6^2 = 36\)
联立 \(a + b = 13\) 和 \(ab = 36\):
设 \(a\) 和 \(b\) 是方程 \(t^2 - 13t + 36 = 0\) 的根
\((t - 4)(t - 9) = 0\)
\(t = 4\) 或 \(t = 9\)
由于 \(a > b\),所以 \(a = 9\),\(b = 4\)
通过设 \(\log_a x = m\) 和 \(\log_a y = n\),证明 \(\log_a x - \log_a y = \log_a\left(\frac{x}{y}\right)\)。
使用对数的定义,将对数转化为指数形式,然后应用指数的运算法则。
设 \(\log_a x = m\) 和 \(\log_a y = n\)
则 \(a^m = x\) 和 \(a^n = y\)
\(\frac{x}{y} = \frac{a^m}{a^n} = a^{m-n}\)
因此 \(\log_a\left(\frac{x}{y}\right) = m - n\)
即 \(\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y\)
证明完成。